M Math Analysis of several variables Midterm examination 14-09-2017.

Answer all the 7 questions. Each question is worth 6 points. Maximum score: 40

If you are using any result proved in the class, you need to state it correctly. If the answer is an immediate consequence of a result quoted, then that result also needs to be proved.

- 1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a one-to-one linear map. Show that there exists a k > 0 such that $||T(x)|| \ge k||x||$ for all $x \in \mathbb{R}^n$.
- 2. Let $f, g: R^n \to R$ be differentiable functions. Define $F: R^n \to R^2$ by $F((x_1, ..., x_n)) = (f(x_1, x_2, 0, ..., 0), g(0, 0, x_3, x_4, ..., x_n))$. Show that F is differentiable.
- 3. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a continuous function. Suppose $\frac{1}{f}$ is defined and differentiable in the open ball B(0,1). Is f differentiable? Justify your answer.
- 4. Let $f: R^2 \to R$ be defined by f(x,y) = 0 if xy = 0 and f(x,y) = 1 otherwise. Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exists at (0,0) but f is not continuous at (0,0).
- 5. Give an example with full details of a function $f: \mathbb{R}^2 \to \mathbb{R}$ for which $D_{12}f$ and $D_{21}f$ exists but are not equal.
- 6. For the functions $f, g: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = x^2 + y^2$, $g(x,y) = (x-1)^3 y^2$. Show that the conclusion of Lagrange multiplier theorem fails to hold while solving for a minimum of f on the zero set of g.
- 7. Let $f:\{(x,y)\in R^2: x+y<1\}\to R$ be a convex function. Show that $F:[0,1]\to R$ defined by $F(t)=f(\frac{1}{2}(1-t),\frac{t}{2})$ for $t\in[0,1]$ is a convex function.